Share Email Print

Proceedings Paper

Non-uniform contrast and noise correction for coded source neutron imaging
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Since the first application of neutron radiography in the 1930s, the field of neutron radiography has matured enough to develop several applications. However, advances in the technology are far from concluded. In general, the resolution of scintillator-based detection systems is limited to the 10μm range, and the relatively low neutron count rate of neutron sources compared to other illumination sources restricts time resolved measurement. One path toward improved resolution is the use of magnification; however, to date neutron optics are inefficient, expensive, and difficult to develop. There is a clear demand for cost-effective scintillator-based neutron imaging systems that achieve resolutions of 1μm or less. Such imaging system would dramatically extend the application of neutron imaging. For such purposes a coded source imaging system is under development. The current challenge is to reduce artifacts in the reconstructed coded source images. Artifacts are generated by non-uniform illumination of the source, gamma rays, dark current at the imaging sensor, and system noise from the reconstruction kernel. In this paper, we describe how to pre-process the coded signal to reduce noise and non-uniform illumination, and how to reconstruct the coded signal with three reconstruction methods correlation, maximum likelihood estimation, and algebraic reconstruction technique. We illustrates our results with experimental examples.

Paper Details

Date Published: 10 February 2012
PDF: 12 pages
Proc. SPIE 8296, Computational Imaging X, 82960P (10 February 2012); doi: 10.1117/12.913150
Show Author Affiliations
Hector J. Santos-Villalobos, Oak Ridge National Lab. (United States)
Philip R. Bingham, Oak Ridge National Lab. (United States)

Published in SPIE Proceedings Vol. 8296:
Computational Imaging X
Charles A. Bouman; Ilya Pollak; Patrick J. Wolfe, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?