Share Email Print

Proceedings Paper

Implantable optrode design for optogenetic visual cortical prosthesis
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The rise of optogenetic neural stimulation has opened new opportunities for neuroprosthesis such as visual cortical prosthesis, which necessitates an efficient delivery of light into the cortex. New forms of photosensitizing channelrhodopsin are reducing the required light intensities for stimulation, but implantable systems need to be highly efficient. Such efficiency calls for low loss in the transmission path, high coupling efficiency between the optic delivery system and optical emitter, as well as emitting efficiency from the light emitting diode. In this paper, we perform simulation results based on ray optics and illuminating theory as to the best strategy to attachment of optrode structures to Gallium Nitride-μLED arrays so as to maximize the efficiency of light delivery to the target neural tissue.Our results show that it is feasible to connect optrode elements and GaN-μLEDarrays for cortical stimulation and describe the optimisation requirements.

Paper Details

Date Published: 9 February 2012
PDF: 10 pages
Proc. SPIE 8207, Photonic Therapeutics and Diagnostics VIII, 82076A (9 February 2012); doi: 10.1117/12.912386
Show Author Affiliations
Na Dong, Southeast Univ. (China)
Xiaohan Sun, Southeast Univ. (China)
Patrick Degenaar, Univ. of Newcastle (United Kingdom)

Published in SPIE Proceedings Vol. 8207:
Photonic Therapeutics and Diagnostics VIII
Anita Mahadevan-Jansen; Andreas Mandelis; Kenton W. Gregory M.D.; Nikiforos Kollias; Hyun Wook Kang; Henry Hirschberg M.D.; Melissa J. Suter; Brian Jet-Fei Wong M.D.; Justus F. Ilgner M.D.; Stephen Lam; Bodo E. Knudsen M.D.; Steen Madsen; E. Duco Jansen; Bernard Choi; Guillermo J. Tearney M.D.; Laura Marcu; Haishan Zeng; Matthew Brenner; Krzysztof Izdebski, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?