
Proceedings Paper
Modified fuzzy c-means applied to a Bragg grating-based spectral imager for material clusteringFormat | Member Price | Non-Member Price |
---|---|---|
$17.00 | $21.00 |
Paper Abstract
We have modified the Fuzzy C-Means algorithm for an application related to segmentation of hyperspectral images.
Classical fuzzy c-means algorithm uses Euclidean distance for computing sample membership to each cluster. We have
introduced a different distance metric, Spectral Similarity Value (SSV), in order to have a more convenient similarity
measure for reflectance information. SSV distance metric considers both magnitude difference (by the use of Euclidean
distance) and spectral shape (by the use of Pearson correlation). Experiments confirmed that the introduction of this
metric improves the quality of hyperspectral image segmentation, creating spectrally more dense clusters and increasing
the number of correctly classified pixels.
Paper Details
Date Published: 2 February 2012
PDF: 10 pages
Proc. SPIE 8300, Image Processing: Machine Vision Applications V, 83000J (2 February 2012); doi: 10.1117/12.909081
Published in SPIE Proceedings Vol. 8300:
Image Processing: Machine Vision Applications V
Philip R. Bingham; Edmund Y. Lam, Editor(s)
PDF: 10 pages
Proc. SPIE 8300, Image Processing: Machine Vision Applications V, 83000J (2 February 2012); doi: 10.1117/12.909081
Show Author Affiliations
Aida Rodríguez, Univ. de Granada (Spain)
Juan Luis Nieves, Univ. de Granada (Spain)
Eva Valero, Univ. de Granada (Spain)
Juan Luis Nieves, Univ. de Granada (Spain)
Eva Valero, Univ. de Granada (Spain)
Estíbaliz Garrote, TECNALIA (Spain)
Javier Hernández-Andrés, Univ. de Granada (Spain)
Javier Romero, Univ. de Granada (Spain)
Javier Hernández-Andrés, Univ. de Granada (Spain)
Javier Romero, Univ. de Granada (Spain)
Published in SPIE Proceedings Vol. 8300:
Image Processing: Machine Vision Applications V
Philip R. Bingham; Edmund Y. Lam, Editor(s)
© SPIE. Terms of Use
