Share Email Print

Proceedings Paper

Multipolar effects and strong coupling in hybrid plasmonic metamaterials
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Recently stacked metamaterial structures coupled to a conductive plane have been investigated and have been shown to exhibit the same properties as stacked structures with double the layers, due to dipole mirror coupling. Here we study a system of stacked subwavelength metallic grating layers coupled to a metal film and show that this system not only supports the localized modes of a doubly layered structure, but also, for non-normal incidence, supports modes that exhibit a clear propagation and in one case a simultaneous localization of the electromagnetic field in the region between the metal film and the first grating layer. Furthermore we show that this hybridized propagating mode, excited for any N number of periodic layers, is further influenced as it couples with the highest energy localized mode of the periodic layered stack. Additionally it is found that the localized modes of the structure can be spectrally positioned in a directly adjacent manner, resulting in wideband absorption that can effectively be tuned by varying the grating film spacing.

Paper Details

Date Published: 22 February 2012
PDF: 7 pages
Proc. SPIE 8269, Photonic and Phononic Properties of Engineered Nanostructures II, 82691B (22 February 2012); doi: 10.1117/12.908923
Show Author Affiliations
Arash Farhang, Ecole Polytechnique Fédérale de Lausanne (Switzerland)
Anantha Ramakrishna, Indian Institute of Technology Kanpur (India)
Olivier J. F. Martin, Ecole Polytechnique Fédérale de Lausanne (Switzerland)

Published in SPIE Proceedings Vol. 8269:
Photonic and Phononic Properties of Engineered Nanostructures II
Ali Adibi; Shawn-Yu Lin; Axel Scherer, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?