
Proceedings Paper
Effect of ridge waveguide etch depth on laser threshold of InGaN MQW laser diodesFormat | Member Price | Non-Member Price |
---|---|---|
$17.00 | $21.00 |
Paper Abstract
The laser threshold and lateral mode confinement of blue (440 nm) InGaN multiple quantum well (MQW) laser diodes
have been investigated. Ridge-waveguide (RW) laser diodes with different ridge etch depth ranging from 25 nm above
the active region (deep-ridge waveguide) to 200 nm above the active region (shallow-ridge waveguide) have been
fabricated. The comparison of devices with the same resonator length shows that the threshold current densities are
significantly lower for deep-ridge waveguide laser diodes. The difference in lasing threshold becomes more eminent for
narrow ridges, which are required for single mode operation. For shallow-ridge devices the threshold current density
increases by more than a factor of three when the ridge width is decreased from 20μm to 1.5μm. For the deep-ridge
waveguide devices instead, the lasing threshold is almost independent of the ridge waveguide width.
The effect has been analyzed by 2D self-consistent electro-optical simulations. For deep-ridge devices, the simulated
thresholds and far-field patterns are in good agreement with the simulations. For shallow-ridge devices, however,
questionable theoretical assumptions are needed. Two possible causes are discussed: extremely large current spreading
and strong index anti-guiding.
Paper Details
Date Published: 27 February 2012
PDF: 8 pages
Proc. SPIE 8262, Gallium Nitride Materials and Devices VII, 826219 (27 February 2012); doi: 10.1117/12.908368
Published in SPIE Proceedings Vol. 8262:
Gallium Nitride Materials and Devices VII
Jen-Inn Chyi; Yasushi Nanishi; Hadis Morkoç; Joachim Piprek; Euijoon Yoon, Editor(s)
PDF: 8 pages
Proc. SPIE 8262, Gallium Nitride Materials and Devices VII, 826219 (27 February 2012); doi: 10.1117/12.908368
Show Author Affiliations
L. Redaelli, Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (Germany)
M. Martens, Technische Univ. Berlin (Germany)
J. Piprek, NUSOD Institute LLC (United States)
H. Wenzel, Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (Germany)
C. Netzel, Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (Germany)
M. Martens, Technische Univ. Berlin (Germany)
J. Piprek, NUSOD Institute LLC (United States)
H. Wenzel, Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (Germany)
C. Netzel, Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (Germany)
A. Linke, Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (Germany)
Yu. V. Flores, Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (Germany)
S. Einfeldt, Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (Germany)
M. Kneissl, Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (Germany)
Technische Univ. Berlin (Germany)
G. Tränkle, Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (Germany)
Yu. V. Flores, Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (Germany)
S. Einfeldt, Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (Germany)
M. Kneissl, Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (Germany)
Technische Univ. Berlin (Germany)
G. Tränkle, Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (Germany)
Published in SPIE Proceedings Vol. 8262:
Gallium Nitride Materials and Devices VII
Jen-Inn Chyi; Yasushi Nanishi; Hadis Morkoç; Joachim Piprek; Euijoon Yoon, Editor(s)
© SPIE. Terms of Use
