Share Email Print

Proceedings Paper

Theoretical analysis of hot electron collection in metal-insulator-metal devices
Author(s): Fuming Wang; Nicholas A. Melosh
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

We propose a new architecture of metal-insulator-metal devices for solar energy harvesting at infrared and visible frequencies based on asymmetrical alignment of insulating barrier relative to the Fermi level of metals and spatial localization of hot electrons excited by photons. Photons absorbed by metals create hot electrons, which can transmit through the thin insulating barrier, producing current. We theoretically investigated the photocurrent response and power generations at different wavelengths. Short circuit current and open circuit voltage can be easily tuned by changing metal thicknesses to adjust the forward and reverse photocurrent. By employing surface plasmons, power generation efficiency is enhanced 9 times in a grating MIM device compared to direct illumination at 650 nm. Finally, we compared the enhancement of power generation efficiency by SPs excited through grating structure and Kretschmann coupling system.

Paper Details

Date Published: 20 September 2011
PDF: 6 pages
Proc. SPIE 8111, Next Generation (Nano) Photonic and Cell Technologies for Solar Energy Conversion II, 81110O (20 September 2011); doi: 10.1117/12.894250
Show Author Affiliations
Fuming Wang, Stanford Univ. (United States)
Nicholas A. Melosh, Stanford Univ. (United States)

Published in SPIE Proceedings Vol. 8111:
Next Generation (Nano) Photonic and Cell Technologies for Solar Energy Conversion II
Loucas Tsakalakos, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?