Share Email Print

Proceedings Paper

Practical pathology perspectives for minimally invasive hyperthermic medical devices
Author(s): James E. Coad
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Currently, hyperthermic-based minimally invasive medical devices are available for the treatment of dysfunctional and neoplastic tissues in a variety of organ systems. These therapies employ a spectrum of modalities for delivering heat energy to the targeted tissue, including radiofrequency/microwave, high intensity focused ultrasound, conductive/convective sources and others. While differences in energy transfer and organ systems exist, hyperthermic treatment sites show a spectrum of changes that intimately correlate with the thermal history generated in the tissue (temperature-time dependence). As a result, these hyperthermic medical technologies can be viewed using a "gradient" approach. First, the thermal applications themselves can be globally categorized along a high-dose ablation to low-dose ablation to lowdose non-ablative rejuvenating slope. Second, the resultant tissue changes can be viewed along a decreasing thermal dose gradient from thermally/heat-fixed tissue necrosis to coagulative tissue necrosis to partial tissue necrosis (transition zone) to subtle non-necrotizing tissue changes. Finally, a gradient of cellular and structural protein denaturation is present, especially within the transition zone and adjacent viable tissue region. A hyperthermic treatment's location along these gradients depends more on the overall thermal history it generates than the amount of energy it deposits into the tissue. The features of these gradients are highlighted to provide a better understanding of hyperthermic device associated tissue changes and their associated healing responses.

Paper Details

Date Published: 23 February 2011
PDF: 12 pages
Proc. SPIE 7901, Energy-based Treatment of Tissue and Assessment VI, 790103 (23 February 2011); doi: 10.1117/12.892498
Show Author Affiliations
James E. Coad, West Virginia Univ. (United States)

Published in SPIE Proceedings Vol. 7901:
Energy-based Treatment of Tissue and Assessment VI
Thomas P. Ryan, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?