Share Email Print
cover

Proceedings Paper

MRF-actuator concepts for HMI and industrial applications
Author(s): Jürgen Maas; Dirk Güth; Ansgar Wiehe
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Actuators based on magnetorheological fluids, like brakes and clutches, offer a high dynamical and almost linear force generation combined with fast response times and a high force density. In this paper concepts of MRF based actuators with radial and axial shear gaps for realizing braking and coupling functions in HMI devices and industrial applications are presented. Designing well defined shear gaps and appropriate electromagnetically driven excitation systems, combined brake and clutch functionalities can be realized even by providing current less bias torques. While actuators using radial shear gaps meet often the requirements for applications with low rotational speeds, e.g. HMI applications, designs with axial shear gaps are predestinated for applications for higher rotational speeds due to their robustness against centrifugation impacts. Experimental results of realized actuators underlining the potential for HMI and industrial applications and reveal the advantages of MRF as the smooth adjustable torque, fast response time and noiseless operation.

Paper Details

Date Published: 27 April 2011
PDF: 12 pages
Proc. SPIE 7977, Active and Passive Smart Structures and Integrated Systems 2011, 797714 (27 April 2011); doi: 10.1117/12.886376
Show Author Affiliations
Jürgen Maas, Ostwestfalen-Lippe Univ. of Applied Sciences (Germany)
Dirk Güth, Ostwestfalen-Lippe Univ. of Applied Sciences (Germany)
Ansgar Wiehe, Ostwestfalen-Lippe Univ. of Applied Sciences (Germany)


Published in SPIE Proceedings Vol. 7977:
Active and Passive Smart Structures and Integrated Systems 2011
Mehrdad N. Ghasemi-Nejhad, Editor(s)

© SPIE. Terms of Use
Back to Top
PREMIUM CONTENT
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?
close_icon_gray