Share Email Print

Proceedings Paper

Adaptive control design for hysteretic smart systems
Author(s): Jerry A. McMahan; Ralph C. Smith
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Ferroelectric and ferromagnetic actuators are being considered for a range of industrial, aerospace, aeronautic and biomedical applications due to their unique transduction capabilities. However, they also exhibit hysteretic and nonlinear behavior that must be accommodated in models and control designs. If uncompensated, these effects can yield reduced system performance and, in the worst case, can produce unpredictable behavior of the control system. In this paper, we address the development of adaptive control designs for hysteretic systems. We review an MRAC-like adaptive control algorithm used to track a reference trajectory while computing online estimates for certain model parameters. This method is incorporated in a composite control algorithm to improve the tracking capabilities of the system. Issues arising in the implementation of these algorithms are addressed, and a numerical example is presented, comparing the results of each method.

Paper Details

Date Published: 28 April 2011
PDF: 11 pages
Proc. SPIE 7978, Behavior and Mechanics of Multifunctional Materials and Composites 2011, 79780K (28 April 2011); doi: 10.1117/12.884621
Show Author Affiliations
Jerry A. McMahan, North Carolina State Univ. (United States)
Ralph C. Smith, North Carolina State Univ. (United States)

Published in SPIE Proceedings Vol. 7978:
Behavior and Mechanics of Multifunctional Materials and Composites 2011
Zoubeida Ounaies; Stefan S. Seelecke, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?