Share Email Print

Proceedings Paper

Investigation of a diffuse optical tomography-assisted quantitative photoacoustic tomography in reflection geometry
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

In this paper, we report the experimental investigation of a novel fitting procedure which can detect and quantitatively characterize the optical contrasts of targets using diffuse optical tomography (DOT)-assisted photoacoustic tomography. The hybrid system combines a 64-channel photoacoustic system with a 9-source, 14-detector frequency-domain DOT system. A white probe was used to house the ultrasound transducer, the optical sources and detectors. The experiment was performed in the reflection mode which is more realistic to clinical applications. The fitting procedure included a complete photoacoustic forward model, which incorporated an analytical model of light transport and a model of acoustic propagation. Using the structural information from the PAT images and the background information from DOT measurements, the photoacoustic forward model was used to recover the target absorption coefficient quantitatively. Phantom absorbers, 1 cm in diameter, with absorption coefficients ranging from 0.08 to 0.28 cm-1 were imaged at depths of up to 3.0 cm. The fitting results were at least 85% of their true values for both high and low contrast targets. Blood sample in a thin tube of radius 0.6 mm, that was simulating a blood vessel, was also imaged, and the reconstructed images and fitted absorption coefficients are presented. These results illustrate the promising application of this fitting procedure for tissue absorption coefficient characterization and consequently breast cancer diagnosis.

Paper Details

Date Published: 17 February 2011
PDF: 10 pages
Proc. SPIE 7899, Photons Plus Ultrasound: Imaging and Sensing 2011, 78990U (17 February 2011); doi: 10.1117/12.877074
Show Author Affiliations
Chen Xu, Univ. of Connecticut (United States)
Patrick D. Kumavor, Univ. of Connecticut (United States)
Andres Aguirre, Univ. of Connecticut (United States)
Quing Zhu, Univ. of Connecticut (United States)

Published in SPIE Proceedings Vol. 7899:
Photons Plus Ultrasound: Imaging and Sensing 2011
Alexander A. Oraevsky; Lihong V. Wang, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?