Share Email Print
cover

Proceedings Paper

Correction of axial optical aberrations in hyperspectral imaging systems
Author(s): Žiga Špiclin; Franjo Pernuš; Boštjan Likar
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

In hyper-spectral imaging systems with a wide spectral range, axial optical aberrations may lead to a significant blurring of image intensities in certain parts of the spectral range. Axial optical aberrations arise from the indexof- refraction variations that is dependent on the wavelength of incident light. To correct axial optical aberrations the point-spread function (PSF) of the image acquisition system needs to be identified. We proposed a multiframe joint blur identification and image restoration method that maximizes the likelihood of local image energy distributions between spectral images. Gaussian mixture model based density estimate provides a link between corresponding spatial information shared among spectral images so as to find and restore the image edges via a PSF update. Model of the PSF was assumed to be a linear combination of Gaussian functions, therefore the blur identification process had to find only the corresponding scalar weights of each Gaussian function. Using the identified PSF, image restoration was performed by the iterative Richardson-Lucy algorithm. Experiments were conducted on four different biological samples using a hyper-spectral imaging system based on acousto-optic tunable filter in the visible spectral range (0.55 - 1.0 μm). By running the proposed method, the quality of raw spectral images was substantially improved. Image quality improvements were quantified by a measure of contrast and demonstrate the potential of the proposed method for the correction of axial optical aberrations.

Paper Details

Date Published: 22 February 2011
PDF: 10 pages
Proc. SPIE 7891, Design and Quality for Biomedical Technologies IV, 78910S (22 February 2011); doi: 10.1117/12.873180
Show Author Affiliations
Žiga Špiclin, Univ. of Ljubljana (Slovenia)
Franjo Pernuš, Univ. of Ljubljana (Slovenia)
Sensum Computer Vision Systems (Slovenia)
Boštjan Likar, Univ. of Ljubljana (Slovenia)
Sensum Computer Vision Systems (Slovenia)


Published in SPIE Proceedings Vol. 7891:
Design and Quality for Biomedical Technologies IV
Ramesh Raghavachari; Rongguang Liang, Editor(s)

© SPIE. Terms of Use
Back to Top