Share Email Print

Proceedings Paper

Terahertz wave opto-mechanical scanner for security application
Author(s): Chao Deng; Yongju Zheng; Cunlin Zhang
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

This paper describes a new opto-mechanical scanner that is hopeful for terahertz imaging in security applications. The target of using this scanner is portal screening of personnel for high-resolution imaging of concealed threat objects. It is not only applied to active terahertz imaging but also applied to passive Terahertz imaging. Terahertz wave can penetrate many materials that are opaque to visible and infrared light, such as plastics, cardboard, textiles and so on. So the terahertz imaging technology has a potential to be applicable in security inspection at airports, stations and other public place. Now, the most terahertz imaging system works at point to point mechanical scan pattern. The speed of this raster scan is too slow to apply in practical field. 2-D terahertz array detector can be applied to real time imaging. But at present their cost is prohibitively high. Fortunately low cost, high performance, opto-mechanically scanner is able to meet the current requirements. An opto-mechanical scanner should be able to rapidly scan a 2-D image of the scene. It also should have high optical efficiency so that an image system can achieve the required thermal sensitivity with the minimum number of receivers. These ensure that it can easily operate at any wavelength, and be active or passive. The opto-mechanically scanning can meets these requirements and is being developed into a high performance, low-cost prototype system that will meet the future needs for terahertz security.

Paper Details

Date Published: 4 November 2010
PDF: 7 pages
Proc. SPIE 7854, Infrared, Millimeter Wave, and Terahertz Technologies, 78541R (4 November 2010);
Show Author Affiliations
Chao Deng, Beijing Institute of Technology (China)
Capital Normal Univ. (China)
Yongju Zheng, Capital Normal Univ. (China)
Cunlin Zhang, Capital Normal Univ. (China)

Published in SPIE Proceedings Vol. 7854:
Infrared, Millimeter Wave, and Terahertz Technologies
Cunlin Zhang; Xi-Cheng Zhang; Peter H. Siegel; Li He; Sheng-Cai Shi, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?