Share Email Print
cover

Proceedings Paper

Nanotechnologies for efficient solar and wind energy harvesting and storage
Author(s): Louay A. Eldada
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

We describe nanotechnologies used to improve the efficient harvest of energy from the Sun and the wind, and the efficient storage of energy in secondary batteries and ultracapacitors, for use in a variety of applications including smart grids, electric vehicles, and portable electronics. We demonstrate high-quality nanostructured copper indium gallium selenide (CIGS) thin films for photovoltaic (PV) applications. The self-assembly of nanoscale p-n junction networks creates n-type networks that act as preferential electron pathways, and p-type networks that act as preferential hole pathways, allowing positive and negative charges to travel to the contacts in physically separated paths, reducing charge recombination. We also describe PV nanotechnologies used to enhance light trapping, photon absorption, charge generation, charge transport, and current collection. Furthermore, we describe nanotechnologies used to improve the efficiency of power-generating wind turbines. These technologies include nanoparticle-containing lubricants that reduce the friction generated from the rotation of the turbines, nanocoatings for de-icing and self-cleaning technologies, and advanced nanocomposites that provide lighter and stronger wind blades. Finally, we describe nanotechnologies used in advanced secondary batteries and ultracapacitors. Nanostructured powder-based and carbon-nanotube-based cathodes and anodes with ultra-high surface areas boost the energy and power densities in secondary batteries, including lithium-ion and sodium-sulfur batteries. Nanostructured carbon materials are also controlled on a molecular level to offer large surface areas for the electrodes of ultracapacitors, allowing to store and supply large bursts of energy needed in some applications.

Paper Details

Date Published: 27 August 2010
PDF: 26 pages
Proc. SPIE 7764, Nanoengineering: Fabrication, Properties, Optics, and Devices VII, 776408 (27 August 2010); doi: 10.1117/12.862736
Show Author Affiliations
Louay A. Eldada, HelioVolt Corp. (United States)


Published in SPIE Proceedings Vol. 7764:
Nanoengineering: Fabrication, Properties, Optics, and Devices VII
Elizabeth A. Dobisz; Louay A. Eldada, Editor(s)

© SPIE. Terms of Use
Back to Top