Share Email Print

Proceedings Paper

Nanoimprinted polymer chips for light induced local heating of liquids in micro- and nanochannels
Author(s): Lasse Højlund Thamdrup; Jonas Nyvold Pedersen; Henrik Flyvbjerg; Niels B. Larsen; Anders Kristensen
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

A nanoimprinted polymer chip with a thin near-infrared absorber layer that enables light-induced local heating (LILH) of liquids inside micro- and nanochannels is presented. An infrared laser spot and corresponding hot-spot could be scanned across the device. Large temperature gradients yield thermophoretic forces, which are used to manipulate and stretch individual DNA molecules confined in nanochannels. The absorber layer consists of a commercially available phthalocyanine dye (Fujifilm), with a narrow absorption peak at approximately 775 nm, dissolved in SU-8 photoresist (Microchem Corp.). The 500 nm thick absorber layer is spin-coated on a transparent substrate and UV exposed. Microand nanofluidic channels are defined by nanoimprint lithography in a 1.5 μm thick layer of low molecular weight polymethyl methacrylate (PMMA, Microchem Corp.), which is spin coated on top of the absorber layer. We have used a previously developed two-level hybrid stamp for replicating two V-shaped microchannels (width=50 μm and height = 900 nm) bridged by an array of 200 nanochannels (width and height of 250 nm). The fluidic channels are finally sealed with a lid using PMMA to PMMA thermal bonding. Light from a 785 nm laser diode was focused from the backside of the chip to a spot diameter down to 5 ..m in the absorber layer, yielding a localized heating (Gaussian profile) and large temperature gradients in the liquid in the nanochannels. A laser power of 38 mW yielded a temperature of 40oC in the center of a 10 μm 1/e diameter. Flourescence microscopy was performed from the frontside.

Paper Details

Date Published: 27 August 2010
PDF: 13 pages
Proc. SPIE 7764, Nanoengineering: Fabrication, Properties, Optics, and Devices VII, 77640I (27 August 2010); doi: 10.1117/12.860221
Show Author Affiliations
Lasse Højlund Thamdrup, Technical Univ. of Denmark (Denmark)
Jonas Nyvold Pedersen, Technical Univ. of Denmark (Denmark)
Henrik Flyvbjerg, Technical Univ. of Denmark (Denmark)
Niels B. Larsen, Technical Univ. of Denmark (Denmark)
Anders Kristensen, Technical Univ. of Denmark (Denmark)

Published in SPIE Proceedings Vol. 7764:
Nanoengineering: Fabrication, Properties, Optics, and Devices VII
Elizabeth A. Dobisz; Louay A. Eldada, Editor(s)

© SPIE. Terms of Use
Back to Top