Share Email Print

Proceedings Paper

Neural methods based on modified reputation rules for detection and identification of intrusion attacks in wireless ad hoc sensor networks
Author(s): William S. Hortos
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Determining methods to secure the process of data fusion against attacks by compromised nodes in wireless sensor networks (WSNs) and to quantify the uncertainty that may exist in the aggregation results is a critical issue in mitigating the effects of intrusion attacks. Published research has introduced the concept of the trustworthiness (reputation) of a single sensor node. Reputation is evaluated using an information-theoretic concept, the Kullback- Leibler (KL) distance. Reputation is added to the set of security features. In data aggregation, an opinion, a metric of the degree of belief, is generated to represent the uncertainty in the aggregation result. As aggregate information is disseminated along routes to the sink node(s), its corresponding opinion is propagated and regulated by Josang's belief model. By applying subjective logic on the opinion to manage trust propagation, the uncertainty inherent in aggregation results can be quantified for use in decision making. The concepts of reputation and opinion are modified to allow their application to a class of dynamic WSNs. Using reputation as a factor in determining interim aggregate information is equivalent to implementation of a reputation-based security filter at each processing stage of data fusion, thereby improving the intrusion detection and identification results based on unsupervised techniques. In particular, the reputation-based version of the probabilistic neural network (PNN) learns the signature of normal network traffic with the random probability weights normally used in the PNN replaced by the trust-based quantified reputations of sensor data or subsequent aggregation results generated by the sequential implementation of a version of Josang's belief model. A two-stage, intrusion detection and identification algorithm is implemented to overcome the problems of large sensor data loads and resource restrictions in WSNs. Performance of the twostage algorithm is assessed in simulations of WSN scenarios with multiple sensors at edge nodes for known intrusion attacks. Simulation results show improved robustness of the two-stage design based on reputation-based NNs to intrusion anomalies from compromised nodes and external intrusion attacks.

Paper Details

Date Published: 22 April 2010
PDF: 15 pages
Proc. SPIE 7704, Evolutionary and Bio-Inspired Computation: Theory and Applications IV, 770404 (22 April 2010); doi: 10.1117/12.852530
Show Author Affiliations
William S. Hortos, Associates in Communications Engineering Research and Technology (United States)

Published in SPIE Proceedings Vol. 7704:
Evolutionary and Bio-Inspired Computation: Theory and Applications IV
Teresa H. O'Donnell; Misty Blowers; Kevin L. Priddy, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?