Share Email Print

Proceedings Paper

Generation of high-range resolution radar signals using the Lorenz chaotic flow
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

We propose a novel approach to generate chaotic Frequency Modulated (FM) signals with potential applications in highresolution radar imaging. The technique relies on the output of an n-dimensional (n>2) non-linear system that exhibits chaotic behavior. For simplicity, we have chosen the Lorenz system which has a set of three state variables x, y and z, and three control parameters ρ, β, and σ. FM signals are generated using any one of the state variables as the instantaneous frequency by varying the values of ρ and β. The obtained FM signal is ergodic and stationary and the time samples exhibit an invariant probability density function. The corresponding pseudo-phase orbits reveal themselves as a strange attractor that may take on the shape of a Mobius strip depending on the time evolution of the signal. A timefrequency analysis of the signal shows that the spectrum is centered on a time-dependent carrier frequency. Thus, the FM signal has a high time-bandwidth product similar to that of a chirp. However, the carrier frequency continuously shifts in a linear or quadratic pattern over a finite frequency range. A desirable feature of the signal is that the width of its autocorrelation's mainlobe approaches the reciprocal of the bandwidth. Furthermore, simulations show that the average of the time autocorrelation falls quickly and is void of sidelobes.

Paper Details

Date Published: 26 April 2010
PDF: 12 pages
Proc. SPIE 7669, Radar Sensor Technology XIV, 76690T (26 April 2010); doi: 10.1117/12.849768
Show Author Affiliations
Chandra S. Pappu, The Univ. of Texas at El Paso (United States)
Benjamin C. Flores, The Univ. of Texas at El Paso (United States)

Published in SPIE Proceedings Vol. 7669:
Radar Sensor Technology XIV
Kenneth I. Ranney; Armin W. Doerry, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?