Share Email Print

Proceedings Paper

Optical cross-talk and surface characterization of SERS nanoimaging bundle substrates
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Due to the narrow vibrational bandwidths and unique molecular fingerprints, Raman spectroscopy can be an information rich transduction technique for chemical imaging. Dynamic systems are often difficult to measure using spontaneous Raman due to the relatively weak scattering cross-sections. Using a Raman enhancement mechanism such as surface enhanced Raman scattering (SERS), exposure times can be reduced to a reasonable level for dynamic imaging, due to the increased Raman signal intensity. This paper will discuss the development of a novel SERS substrate, fabricated on the tips of fiber-optic imaging bundles, which can be integrated into a multispectral imaging system for non-scanning chemical imaging. These substrates are fabricated by mechanically tapering a polished fiber optic imaging bundle consisting of 30,000 individual elements; producing 100-nm or smaller diameter core elements on the distal tip. Chemical etching with hydrofluoric acid creates uniform cladding spikes onto which a SERS active metal is vacuum deposited, forming the SERS active surface. By varying the size of the silver islands deposited on the cladding peaks active, surface plasmons can be tuned to various excitation frequencies. The surface of these tapered fiber optic probes will be evaluated by analysis of the SERS signal, location and shape of the active surface plasmons. The cross talk between the fiber elements will also be evaluated.

Paper Details

Date Published: 23 April 2010
PDF: 8 pages
Proc. SPIE 7674, Smart Biomedical and Physiological Sensor Technologies VII, 76740D (23 April 2010); doi: 10.1117/12.849551
Show Author Affiliations
John B. Kiser, Univ. of Maryland, Baltimore County (United States)
Brian M. Cullum, Univ. of Maryland, Baltimore County (United States)

Published in SPIE Proceedings Vol. 7674:
Smart Biomedical and Physiological Sensor Technologies VII
Brian M. Cullum; D. Marshall Porterfield; Karl S. Booksh, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?