Share Email Print

Proceedings Paper

Performance evaluation of MOSFETs with discrete dopant distribution by one-by-one doping method
Author(s): T. Shinada; M. Hori; Y. Ono; K. Taira; A. Komatsubara; T. Tanii; T. Endoh; I. Ohdomari
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

This paper presents the fabrication and measurements of MOSFETs with various dopant distributions in the channels for investigating the impact of discrete dopant distribution on device performances. Phosphorus-ions are implanted "orderly" into the channels as well as "asymmetrically" into one side of channels both with ordered and random distribution by single-ion implanter with capability of one-by-one doping. Electrical measurements reveal that the threshold voltage (Vth) fluctuation for the ordered dopant arrays is less than for conventional random doping and the device with ordered dopant array exhibits two times the lower average value (-0.4V) of Vth shift than the random dopant distribution (-0.2V). We conclude that the observed lower value originates from the uniformity of electrostatic potential in the channel region due to the ordered distribution of dopants. We also observe deviation in subthreshold current when interchanging the source and drain terminals. The subthreshold current is always larger when the dopants are located at the drain side than at the source side for both ordered and random distribution cases. We believe that this increase in current is caused by the suppression of injection velocity degradation in the source side. Accurately controlling both the amount and the positioning of dopant atoms is critical for the advancement of extending CMOS technologies with reduced variation caused by random dopant fluctuation.

Paper Details

Date Published: 2 April 2010
PDF: 7 pages
Proc. SPIE 7637, Alternative Lithographic Technologies II, 763711 (2 April 2010); doi: 10.1117/12.848322
Show Author Affiliations
T. Shinada, Waseda Univ. (Japan)
M. Hori, Waseda Univ. (Japan)
Y. Ono, NTT Basic Research Labs. (Japan)
K. Taira, Waseda Univ. (Japan)
A. Komatsubara, Waseda Univ. (Japan)
T. Tanii, Waseda Univ. (Japan)
T. Endoh, Tohoku Univ. (Japan)
I. Ohdomari, Waseda Univ. (Japan)

Published in SPIE Proceedings Vol. 7637:
Alternative Lithographic Technologies II
Daniel J. C. Herr, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?