Share Email Print

Proceedings Paper

Power-scaling Nd:YAG's quasi-four-level transition
Author(s): J. I. Mackenzie
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Increasing the output power of Nd:YAG's 4F3/24I9/2 quasi-four-level transition is attractive for providing a highradiance source with a wavelength below 1micron for applications at the life sciences interface, ranging and sensing, or as a vital element for next-generation display technologies, when frequency converted into the blue-green part of the visible spectrum. Reabsorption losses at the lasing wavelength combined with a relatively low stimulated emission crosssection and competition with the much stronger 1.06 micron transition, demands a configuration with high pumping intensity, comparable to the pump saturation intensity at 808 nm, to achieve efficient operation. However, even with the availability of increasingly bright diode-lasers, the thermal deficit of the excitation cycle and the thermo-optic properties of the YAG host medium currently limit the achievable output power at 9xx nm. Presented here is a double-clad planarwaveguide Nd:YAG laser, operating at a lasing wavelength of 946 nm with an output power in the 100 W regime and better than 50% optical to optical conversion efficiency. The enhanced thermal management characteristics of the waveguide structure have enabled power-scaling well beyond that possible in a bulk laser configuration. These advantages and further power-scaling possibilities will be discussed.

Paper Details

Date Published: 17 February 2010
PDF: 8 pages
Proc. SPIE 7578, Solid State Lasers XIX: Technology and Devices, 75780L (17 February 2010); doi: 10.1117/12.847996
Show Author Affiliations
J. I. Mackenzie, Univ. of Southampton (United Kingdom)

Published in SPIE Proceedings Vol. 7578:
Solid State Lasers XIX: Technology and Devices
W. Andrew Clarkson; Norman Hodgson; Ramesh K. Shori, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?