Share Email Print

Proceedings Paper

Similarity based false-positive reduction for breast cancer using radiographic and pathologic imaging features
Author(s): Akshay Pai; Ravi K. Samala; Jianying Zhang; Wei Qian
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Mammography reading by radiologists and breast tissue image interpretation by pathologists often leads to high False Positive (FP) Rates. Similarly, current Computer Aided Diagnosis (CADx) methods tend to concentrate more on sensitivity, thus increasing the FP rates. A novel method is introduced here which employs similarity based method to decrease the FP rate in the diagnosis of microcalcifications. This method employs the Principal Component Analysis (PCA) and the similarity metrics in order to achieve the proposed goal. The training and testing set is divided into generalized (Normal and Abnormal) and more specific (Abnormal, Normal, Benign) classes. The performance of this method as a standalone classification system is evaluated in both the cases (general and specific). In another approach the probability of each case belonging to a particular class is calculated. If the probabilities are too close to classify, the augmented CADx system can be instructed to have a detailed analysis of such cases. In case of normal cases with high probability, no further processing is necessary, thus reducing the computation time. Hence, this novel method can be employed in cascade with CADx to reduce the FP rate and also avoid unnecessary computational time. Using this methodology, a false positive rate of 8% and 11% is achieved for mammography and cellular images respectively.

Paper Details

Date Published: 9 March 2010
PDF: 9 pages
Proc. SPIE 7624, Medical Imaging 2010: Computer-Aided Diagnosis, 76242G (9 March 2010); doi: 10.1117/12.844617
Show Author Affiliations
Akshay Pai, The Univ. of Texas at El Paso (United States)
Ravi K. Samala, The Univ. of Texas at El Paso (United States)
Jianying Zhang, The Univ. of Texas at El Paso (United States)
Wei Qian, The Univ. of Texas at El Paso (United States)

Published in SPIE Proceedings Vol. 7624:
Medical Imaging 2010: Computer-Aided Diagnosis
Nico Karssemeijer; Ronald M. Summers, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?