Share Email Print

Proceedings Paper

Spatial resolution of ultrasound-modulated optical tomography used for the detection of absorbing and scattering objects in thick scattering media
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Ultrasound-modulated optical tomography (UOT) combines the spatial resolution of ultrasonic waves and the spectroscopic properties of light to detect optically absorbing and/or scattering objects in highly scattering media. In this work, a double-pass confocal Fabry-Perot interferometer is used as a bandpass filter to selectively detect the ultrasoundtagged photons. The limited etendue of the confocal Fabry-Perot interferometer is compensated by using a singlefrequency laser emitting high-peak-power optical pulses. Compared to photoacoustic tomography, UOT is not only sensitive to optical absorption but also to scattering properties. In this paper, we consider the detection of absorbing and scattering objects embedded in thick (30 to 60 mm) tissue-mimicking phantoms and biological tissues. The experimental evaluation of the spatial resolution of the technique is compared to that expected from the ultrasonic beam intensity profile. Preliminary results indicate that the edge spread function is influenced by the level of absorption of the embedded object.

Paper Details

Date Published: 23 February 2010
PDF: 6 pages
Proc. SPIE 7564, Photons Plus Ultrasound: Imaging and Sensing 2010, 75642A (23 February 2010); doi: 10.1117/12.841828
Show Author Affiliations
Guy Rousseau, National Research Council Canada (Canada)
Alain Blouin, National Research Council Canada (Canada)
Jean-Pierre Monchalin, National Research Council Canada (Canada)

Published in SPIE Proceedings Vol. 7564:
Photons Plus Ultrasound: Imaging and Sensing 2010
Alexander A. Oraevsky; Lihong V. Wang, Editor(s)

© SPIE. Terms of Use
Back to Top