Share Email Print

Proceedings Paper

Verification of cutting zone machinability during drilling of austenitic stainless steels
Author(s): Jozef Jurko
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Automated production of, in the sense of, machine production has characteristic features: a reduction of production costs, stimulation of the development of cutting tools, and changes in the construction of machine tools, all of which work against the creation of optimal technological methods, which thrusts the technological process of cutting into a more important position. These trends confirm that the cutting process remains one of the basic manufacturing technologies. A condition of the economic usage of modern, automated programmed drilling machines is the optimal course of the cutting process, i.e. the use of optimal work conditions. A summary of optimal work conditions requires knowledge of the laws of cutting theory and knowledge of the practical conditions of their application. This article presents the results of experiments that concerned the verification of machinability of work pieces of difference types of X12CrNi 18 8 austenitic stainless steel. Steel X12CrNi 18 8 is the chief representative of the austenitic stainless steels, and this steel falls into the category of materials that are difficult to machine. The rapid development of industry is marked by the development and application of new materials with characteristics that broaden their applicable uses. Precise and reliable information on the machinability of a material before it enters the machining process is a necessity, and hypotheses must be tested through verification of actual methods. This article presents conclusions of machinability tests on austenitic stainless steels and describes appropriate parameters for the cutting zone during the process of drilling with the goal of proposing recommendations for this steels, and to integrate current knowledge in this field with drilling and praxis. This article concerns itself with the evaluation of selected domains of machinability in compliance with EN ISO standards. The experiments were performed in laboratory conditions and verified in real conditions during manufacture. The set-up used contained the following components: a turning machine with gas regulation of rotational frequency, a cutting tool with M20 cutter.

Paper Details

Date Published: 24 August 2009
PDF: 12 pages
Proc. SPIE 7375, ICEM 2008: International Conference on Experimental Mechanics 2008, 73751H (24 August 2009); doi: 10.1117/12.839061
Show Author Affiliations
Jozef Jurko, Technical Univ. of Košice (Slovakia)

Published in SPIE Proceedings Vol. 7375:
ICEM 2008: International Conference on Experimental Mechanics 2008
Xiaoyuan He; Huimin Xie; YiLan Kang, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?