Share Email Print

Proceedings Paper

An enhanced dynamic Delaunay triangulation-based path planning algorithm for autonomous mobile robot navigation
Author(s): Jun Chen; Chaomin Luo; Mohan Krishnan; Mark Paulik; Yipeng Tang
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

An enhanced dynamic Delaunay Triangulation-based (DT) path planning approach is proposed for mobile robots to plan and navigate a path successfully in the context of the Autonomous Challenge of the Intelligent Ground Vehicle Competition ( The Autonomous Challenge course requires the application of vision techniques since it involves path-based navigation in the presence of a tightly clustered obstacle field. Course artifacts such as switchbacks, ramps, dashed lane lines, trap etc. are present which could turn the robot around or cause it to exit the lane. The main contribution of this work is a navigation scheme based on dynamic Delaunay Triangulation (DDT) that is heuristically enhanced on the basis of a sense of general lane direction. The latter is computed through a "GPS (Global Positioning System) tail" vector obtained from the immediate path history of the robot. Using processed data from a LADAR, camera, compass and GPS unit, a composite local map containing both obstacles and lane line segments is built up and Delaunay Triangulation is continuously run to plan a path. This path is heuristically corrected, when necessary, by taking into account the "GPS tail" . With the enhancement of the Delaunay Triangulation by using the "GPS tail", goal selection is successfully achieved in a majority of situations. The robot appears to follow a very stable path while navigating through switchbacks and dashed lane line situations. The proposed enhanced path planning and GPS tail technique has been successfully demonstrated in a Player/Stage simulation environment. In addition, tests on an actual course are very promising and reveal the potential for stable forward navigation.

Paper Details

Date Published: 18 January 2010
PDF: 12 pages
Proc. SPIE 7539, Intelligent Robots and Computer Vision XXVII: Algorithms and Techniques, 75390P (18 January 2010);
Show Author Affiliations
Jun Chen, Univ. of Detroit Mercy (United States)
Chaomin Luo, Univ. of Detroit Mercy (United States)
Mohan Krishnan, Univ. of Detroit Mercy (United States)
Mark Paulik, Univ. of Detroit Mercy (United States)
Yipeng Tang, Univ. of Detroit Mercy (United States)

Published in SPIE Proceedings Vol. 7539:
Intelligent Robots and Computer Vision XXVII: Algorithms and Techniques
David P. Casasent; Ernest L. Hall; Juha Röning, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?