Share Email Print

Proceedings Paper

Study on paddy rice yield estimation based on multisource data and the Grey system theory
Author(s): Wensheng Deng; Wei Wang; Hai Liu; Chen Li; Yimin Ge; Xianghua Zheng
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The paddy rice is our important crops. In study of the paddy rice yield estimation, compared with the scholars who usually only take the remote sensing data or meteorology as the influence factors, we combine the remote sensing and the meteorological data to make the monitoring result closer reality. Although the gray system theory has used in many aspects, it is applied very little in paddy rice yield estimation. This study introduces it to the paddy rice yield estimation, and makes the yield estimation model. This can resolve small data sets problem that can not be solved by deterministic model. It selects some regions in Jianghan plain for the study area. The data includes multi-temporal remote sensing image, meteorological and statistic data. The remote sensing data is the 16-day composite images (250-m spatial resolution) of MODIS. The meteorological data includes monthly average temperature, sunshine duration and rain fall amount. The statistical data is the long-term paddy rice yield of the study area. Firstly, it extracts the paddy rice planting area from the multi-temporal MODIS images with the help of GIS and RS. Then taking the paddy rice yield as the reference sequence, MODIS data and meteorological data as the comparative sequence, computing the gray correlative coefficient, it selects the yield estimation factor based on the grey system theory. Finally, using the factors, it establishes the yield estimation model and does the result test. The result indicated that the method is feasible and the conclusion is credible. It can provide the scientific method and reference value to carry on the region paddy rice remote sensing estimation.

Paper Details

Date Published: 15 October 2009
PDF: 9 pages
Proc. SPIE 7492, International Symposium on Spatial Analysis, Spatial-Temporal Data Modeling, and Data Mining, 749227 (15 October 2009); doi: 10.1117/12.837431
Show Author Affiliations
Wensheng Deng, Hubei Univ. (China)
Wei Wang, Hubei Univ. (China)
Hai Liu, Wuhan Univ. (China)
Chen Li, Hubei Univ. (China)
Yimin Ge, Hubei Univ. (China)
Xianghua Zheng, Wuhan Univ. (China)

Published in SPIE Proceedings Vol. 7492:
International Symposium on Spatial Analysis, Spatial-Temporal Data Modeling, and Data Mining
Yaolin Liu; Xinming Tang, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?