Share Email Print

Proceedings Paper

Biaxial flexural strength of optical window materials
Author(s): Claude A. Klein
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The design of high-energy laser windows critically depends on the availability of appropriate numbers for the allowable tensile stress. Relying on a "modulus of rupture" in conjunction with a "safety factor" usually results in overestimating the required thickness, which degrades the optical performance. The primary purpose of this paper is to clarify issues relating to Weibull's theory of brittle fracture and make use of the theory to assess the results of equibiaxial flexure testing that was carried out on laser-window material candidates. Specifically, we describe the failure-probability distribution in terms of the characteristic strength σC--i.e., the effective strength of a uniformly stressed 1-cm2 area---and the shape parameter m, which reflects the dispersion of surface-flaw sizes. A statistical analysis of flexural strength data thus amounts to obtaining the parameters σC and m, which is best done by directly fitting estimated cumulative failure probabilities to the appropriate expression derived from Weibull's theory. In this light, we demonstrate that (a) at the 1% failure-probability level, fusion-cast CaF2 and OxyFluoride Glass perform poorly compared to CVD-ZnSe; (b) available data for fused SiO2 and sapphire confirm the area-scaling principle, thus validating Weibull's theory; and (c) compressive coatings enhance the characteristic strength but degrade the shape parameter, which mitigates their benefit. In Appendix, it is shown that four-point bending data for fusion-cast CaF2 do not obey a simple two-parameter model but are indicative of a bimodal surface-flaw population.

Paper Details

Date Published: 31 December 2009
PDF: 13 pages
Proc. SPIE 7504, Laser-Induced Damage in Optical Materials: 2009, 75040K (31 December 2009); doi: 10.1117/12.836920
Show Author Affiliations
Claude A. Klein, C.A.K. Analytics, Inc. (United States)

Published in SPIE Proceedings Vol. 7504:
Laser-Induced Damage in Optical Materials: 2009
Gregory J. Exarhos; Vitaly E. Gruzdev; Detlev Ristau; M. J. Soileau; Christopher J. Stolz, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?