Share Email Print

Proceedings Paper

Impact of resolution in multi-conjugate adaptive optics systems using segmented mirrors
Author(s): Thomas A. Corej; Jason D. Schmidt
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

In moderate-to-strong scintillation, multi-conjugate adaptive optics (MCAO) appears promising to compensate for amplitude and phase fluctuations. In this research, a MCAO system is simulated with a segmented deformable mirror (DM) reshaping the amplitude and the second DM (continuous) flattening the phase after propagation from the segmented mirror. A Gerchberg-Saxton (GS) type algorithm is used with Fresnel propagation between DM planes. The effects of varying the phase's apparent resolution on a segmented DM in the pupil plane is investigated. Results show the mean square error in the reshaped beam decreases as D/ro and Rytov number increase over the range of conditions tested (ro: 0.11 m - 0.36 m). The field-estimated Strehl ratio drops precipitously when the number of subapertures is increased beyond about 36 across, using a branch-pointtolerant unwrapper, due to the presence of branch points. On the second DM, by using the mean of the phase within each subaperture before back propagating to the first DM plane (inside the GS loop), the Strehl ratio was improved 6 - 11 percent using 4 - 19 actuators across. Further a novel method of cascading segmented DMs, of increasingly higher resolution, doing amplitude reshaping followed by a continuous DM to flatten the phase is explored.

Paper Details

Date Published: 11 August 2009
PDF: 12 pages
Proc. SPIE 7466, Advanced Wavefront Control: Methods, Devices, and Applications VII, 74660C (11 August 2009); doi: 10.1117/12.823963
Show Author Affiliations
Thomas A. Corej, Air Force Institute of Technology (United States)
Jason D. Schmidt, Air Force Institute of Technology (United States)

Published in SPIE Proceedings Vol. 7466:
Advanced Wavefront Control: Methods, Devices, and Applications VII
Richard A. Carreras; Troy A. Rhoadarmer; David C. Dayton, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?