Share Email Print

Proceedings Paper

Doppler optical coherence tomography in cardiovascular physiology
Author(s): M. Bonesi; I. Meglinski; S. Matcher
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The study of flow dynamics in complex geometry vessels is highly important in many biomedical applications where the knowledge of the mechanic interactions between the moving fluid and the housing media plays a key role for the determination of the parameters of interest, including the effect of blood flow on the possible rupture of atherosclerotic plaques. Doppler Optical Coherence Tomography (DOCT), as a functional extension of Optical Coherence Tomography (OCT), is an optic, non-contact, non-invasive technique able to achieve detailed analysis of the flow/vessel interactions. It allows simultaneous high resolution imaging (10 μm typical) of the morphology and composition of the vessel and determination of the flow velocity distribution along the measured cross-section. We applied DOCT system to image high-resolution one-dimensional and multi-dimensional velocity distribution profiles of Newtonian and non-Newtonian fluids flowing in vessels with complex geometry, including Y-shaped and T-shaped vessels, vessels with aneurism, bifurcated vessels with deployed stent and scaffolds. The phantoms were built to mimic typical shapes of human blood vessels, enabling preliminary analysis of the interaction between flow dynamics and the (complex) geometry of the vessels and also to map the related velocity profiles at several inlet volume flow rates. Feasibility studies for quantitative observation of the turbulence of flows arising within the complex geometry vessels are discussed. In addition, DOCT technique was also applied for monitoring cerebral mouse blood flow in vivo. Two-dimensional DOCT images of complex flow velocity profiles in blood vessel phantoms and in vivo sub-cranial mouse blood flow velocities distributions are presented.

Paper Details

Date Published: 30 December 2008
PDF: 11 pages
Proc. SPIE 7139, 1st Canterbury Workshop on Optical Coherence Tomography and Adaptive Optics, 71390I (30 December 2008); doi: 10.1117/12.822553
Show Author Affiliations
M. Bonesi, Univ. of Sheffield (United Kingdom)
I. Meglinski, Cranfield Univ. (United Kingdom)
S. Matcher, Univ. of Sheffield (United Kingdom)

Published in SPIE Proceedings Vol. 7139:
1st Canterbury Workshop on Optical Coherence Tomography and Adaptive Optics
Adrian Podoleanu, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?