Share Email Print

Proceedings Paper

CARS-based silicon photonics
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

In this invited paper, we will first discuss the recent research progress regarding silicon-on-insulator (SOI) Raman wavelength converters, the working principle of which is based on the four-wave mixing process of coherent anti-Stokes Raman scattering (CARS). Next, we will present our research results on other aspects of CARS in SOI waveguides. First, starting from the basic formalism for CARS we will show that, in contrast to what most scientists believe, CARS exchanges energy with the Raman medium in which it takes place and is even able to extract energy (i.e. extract phonons) from it. Furthermore, we will introduce a novel CARS-based approach to reduce the heat dissipation in Raman lasers due to the quantum defect between pump and lasing photons, and we will numerically demonstrate that with this "CARS-based heat mitigation technique" the quantum-defect heating in SOI waveguide Raman lasers could be reduced with as much as 35%.

Paper Details

Date Published: 20 May 2009
PDF: 15 pages
Proc. SPIE 7366, Photonic Materials, Devices, and Applications III, 736603 (20 May 2009);
Show Author Affiliations
Nathalie Vermeulen, Vrije Univ. Brussel (Belgium)
Christof Debaes, Vrije Univ. Brussel (Belgium)
Hugo Thienpont, Vrije Univ. Brussel (Belgium)

Published in SPIE Proceedings Vol. 7366:
Photonic Materials, Devices, and Applications III
Ali Serpenguzel; Gonçal Badenes; Giancarlo C. Righini, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?