
Proceedings Paper
Fast inverse identification of delamination of E-glass/epoxy laminated composite panelsFormat | Member Price | Non-Member Price |
---|---|---|
$17.00 | $21.00 |
Paper Abstract
In this paper, a novel vibration-based methodology for fast inverse identification of delamination in E-glass/epoxy
composite panels has been proposed with experimental demonstration using a scanning laser vibrometer (SLV). The
methodology consists of 1) a parameter subset selection for delamination damage localization and 2) iterative inverse
eigenvalue analysis for damage quantification. It can potentially lead to a functional formulation relating spatial and
global damage indices such as curvature damage factor to local damage parameters. The functional relationship will be
suitable to fast or real-time in-situ delamination damage identification. To accomplish the objectives, a shear-locking
free higher-order finite element model has been combined with a micromechanics theory-based continuum damage
model as an identification model for locating delamination. Applications of the proposed methodology to an Eglass/
epoxy panel [CSM/UM1208/3 layers of C1800]s = [CSM/0/(90/0)3]s with delamination have been demonstrated
both numerically and experimentally using a piezoelectric actuator, a PVDF sensor and non-contact measuring SLV.
Experimental modal analysis has been successfully conducted using the sample specimen to demonstrate the proposed
methodology.
Paper Details
Date Published: 8 April 2009
PDF: 12 pages
Proc. SPIE 7294, Nondestructive Characterization for Composite Materials, Aerospace Engineering, Civil Infrastructure, and Homeland Security 2009, 72940H (8 April 2009); doi: 10.1117/12.821525
Published in SPIE Proceedings Vol. 7294:
Nondestructive Characterization for Composite Materials, Aerospace Engineering, Civil Infrastructure, and Homeland Security 2009
H. Felix Wu; Aaron A. Diaz; Peter J. Shull; Dietmar W. Vogel, Editor(s)
PDF: 12 pages
Proc. SPIE 7294, Nondestructive Characterization for Composite Materials, Aerospace Engineering, Civil Infrastructure, and Homeland Security 2009, 72940H (8 April 2009); doi: 10.1117/12.821525
Show Author Affiliations
Pizhong Qiao, Washington State Univ. (United States)
Published in SPIE Proceedings Vol. 7294:
Nondestructive Characterization for Composite Materials, Aerospace Engineering, Civil Infrastructure, and Homeland Security 2009
H. Felix Wu; Aaron A. Diaz; Peter J. Shull; Dietmar W. Vogel, Editor(s)
© SPIE. Terms of Use
