Share Email Print

Proceedings Paper

Bio-inspired color image enhancement model
Author(s): Yufeng Zheng
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Human being can perceive natural scenes very well under various illumination conditions. Partial reasons are due to the contrast enhancement of center/surround networks and opponent analysis on the human retina. In this paper, we propose an image enhancement model to simulate the color processes in the human retina. Specifically, there are two center/surround layers, bipolar/horizontal and ganglion/amacrine; and four color opponents, red (R), green (G), blue (B), and yellow (Y). The central cell (bipolar or ganglion) takes the surrounding information from one or several horizontal or amacrine cells; and bipolar and ganglion both have ON and OFF sub-types. For example, a +R/-G bipolar (red-center- ON/green-surround-OFF) will be excited if only the center is illuminated, or inhibited if only the surroundings (bipolars) are illuminated, or stay neutral if both center and surroundings are illuminated. Likewise, other two color opponents with ON-center/OFF-surround, +G/-R and +B/-Y, follow the same rules. The yellow (Y) channel can be obtained by averaging red and green channels. On the other hand, OFF-center/ON-surround bipolars (i.e., -R/+G and -G/+R, but no - B/+Y) are inhibited when the center is illuminated. An ON-bipolar (or OFF-bipolar) only transfers signals to an ONganglion (or OFF-ganglion), where amacrines provide surrounding information. Ganglion cells have strong spatiotemporal responses to moving objects. In our proposed enhancement model, the surrounding information is obtained using weighted average of neighborhood; excited or inhibited can be implemented with pixel intensity increase or decrease according to a linear or nonlinear response; and center/surround excitations are decided by comparing their intensities. A difference of Gaussian (DOG) model is used to simulate the ganglion differential response. Experimental results using natural scenery pictures proved that, the proposed image enhancement model by simulating the two-layer center/surrounding retinal networks can effectively enhance color images in terms of color contrast and image details.

Paper Details

Date Published: 27 April 2009
PDF: 12 pages
Proc. SPIE 7341, Visual Information Processing XVIII, 73410D (27 April 2009); doi: 10.1117/12.819519
Show Author Affiliations
Yufeng Zheng, Alcorn State Univ. (United States)

Published in SPIE Proceedings Vol. 7341:
Visual Information Processing XVIII
Zia-Ur Rahman; Stephen E. Reichenbach; Mark Allen Neifeld, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?