Share Email Print

Proceedings Paper

Standoff subterranean high definition impedance imaging
Author(s): A. Wexler
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

High definition impedance imaging (HDII) is applicable, from d.c. upward for electrical, sonic and elasticity signal excitations. At low frequencies, great depth is achievable in contrast to that provided by radar without HDII. The HDII solution process results in a very large and sparse matrix system and associated algorithms provide convergence with few iterations and high image definition. The methodology solves the three-dimensional image solution rather that by solving in slices. HDII image quality results from the number of linearly independent equations resulting from the number of electrodes and linearly independent measurements that are obtained. To construct a standoff (i.e. contactless) system, the three-dimensional vector Helmholtz equation, i.e. the formulation used in antennal analysis, may be employed. To do this, the same basic HDII imaging algorithm, as used for the contact case, is employed for standoff imaging. Over determination can permit significantly refined image quality.

Paper Details

Date Published: 4 May 2009
PDF: 10 pages
Proc. SPIE 7303, Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XIV, 73031V (4 May 2009); doi: 10.1117/12.818713
Show Author Affiliations
A. Wexler, Quantic Electroscan, Inc. (Canada)

Published in SPIE Proceedings Vol. 7303:
Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XIV
Russell S. Harmon; J. Thomas Broach; John H. Holloway Jr., Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?