Share Email Print

Proceedings Paper

Quantitative assessment of wound-healing process as a response to laser-induced micro-injuries
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Currently, most investigations of wound healing rely on invasive biopsy followed by histology and immunohistochemistry staining. There is a great need to develop non-invasive techniques for in vivo diagnostic, clinical and scientific evaluation. Here, we performed a comprehensive investigation on the dynamic wound healing process as a response to laser-induced microinjuries using non-invasive imaging techniques such as reflectance laser-scanning confocal microscopy and video microscopy. Eight healthy subjects ranging from Fitzpatrick skin type II-VI with age from 27 to 57 years were recruited. The volar forearm of each subject was treated with a laser device that generates an array of microbeams with an infrared wavelength. The microscopic changes of epidermal cells and collagen during the wound healing process were assessed non-invasively using confocal microscopy. We also developed a quantitative method to evaluate the dynamic wound healing process at the microscopic level in three areas of interest: (1) treated micro-wounding zone, (2) surrounding collateral damage zone and (3) normal area. The depth-dependent intensity profile derived from reflectance confocal microscope images clearly distinguishes the three areas of interest and quantitatively measures the cellular structure-associated changes. A progressive change in depth-dependent intensity profiles in subjects with different ages parallels the clinical observation of wound healing rate. The quantitative analysis developed in this study may find broad applications in assessing the skin response to treatment at a microscopic level.

Paper Details

Date Published: 23 February 2009
PDF: 6 pages
Proc. SPIE 7161, Photonic Therapeutics and Diagnostics V, 71610W (23 February 2009); doi: 10.1117/12.811917
Show Author Affiliations
Yang Liu, Johnson & Johnson CPPW (United States)
Paulo Bargo, Johnson & Johnson CPPW (United States)
Nikiforos Kollias, Johnson & Johnson CPPW (United States)

Published in SPIE Proceedings Vol. 7161:
Photonic Therapeutics and Diagnostics V
Henry Hirschberg M.D.; Brian Jet-Fei Wong M.D.; Kenton W. Gregory M.D.; Reza S. Malek; Nikiforos Kollias; Bernard Choi; Guillermo J. Tearney; Justus F. R. Ilgner; Steen J. Madsen; Laura Marcu; Haishan Zeng, Editor(s)

© SPIE. Terms of Use
Back to Top