Share Email Print

Proceedings Paper

Optical coherence tomography in estimating molecular diffusion of drugs and analytes in ocular tissues
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Aside from other ocular drug delivery methods, topical application and follow up drug diffusion through the cornea and sclera of the eye remain the favored method, as they impose the least pain and discomfort to the patient. However, this delivery route suffers from the low permeability of epithelial tissues and drug washout, thus reducing the effectiveness of the drug and ability to reach its target in effective concentrations. In order to better understand the behavioral characteristics of diffusion in ocular tissue, a method for noninvasive imaging of drug diffusion is needed. Due to its high resolution and depth-resolved imaging capabilities, optical coherence tomography (OCT) has been utilized in quantifying the molecular transport of different drugs and analytes in vitro in the sclera and the cornea. Diffusion of Metronidazole (0.5%), Dexamethasone (0.2%), Ciprofloxacin (0.3%), Mannitol (20%), and glucose solution (20%) in rabbit sclera and cornea were examined. Their permeability coefficients were calculated by using OCT signal slope and depth-resolved amplitude methods as function of time and tissue depth. For instance, mannitol was found to have a permeability coefficient of (8.99 ± 1.43) × 10-6 cm/s in cornea (n=4) and (6.18 ± 1.08) × 10-6 cm/s in sclera (n=5). We also demonstrate the capability of OCT technique for depth-resolved monitoring and quantifying of glucose diffusion in different layers of the sclera. We found that the glucose diffusion rate is not uniform throughout the tissue and is increased from approximately (2.39 ± 0.73) × 10-6 cm/s at the epithelial side to (8.63 ± 0.27) × 10-6 cm/s close to the endothelial side of the sclera. In addition, discrepancy in the permeability rates of glucose solutions with different concentrations was observed. Such diffusion studies could enhance our knowledge and potentially pave the way for advancements of therapeutic and diagnostic techniques in the treatment of ocular diseases.

Paper Details

Date Published: 18 February 2009
PDF: 7 pages
Proc. SPIE 7163, Ophthalmic Technologies XIX, 71631H (18 February 2009); doi: 10.1117/12.810635
Show Author Affiliations
Mohamad G. Ghosn, Univ. of Houston (United States)
Valery V. Tuchin, Saratov State Univ. (Russian Federation)
Institute of Precise Mechanics and Control (Russian Federation)
Kirill V. Larin, Univ. of Houston (United States)
Saratov State Univ. (Russian Federation)

Published in SPIE Proceedings Vol. 7163:
Ophthalmic Technologies XIX
Fabrice Manns; Per G. Söderberg; Arthur Ho, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?