
Proceedings Paper
The measurement of red blood cell volume induced by Ca2+ based on full field quantitative phase microscopyFormat | Member Price | Non-Member Price |
---|---|---|
$17.00 | $21.00 |
Paper Abstract
We present the measurement of red blood cell (RBC) volume change induced by Ca2+ for a live cell imaging with
full field quantitative phase microscopy (FFQPM). FFQPM is based on the Mach-Zehnder interferometer combined with
an inverted microscopy system. We present the effective method to obtain a clear image and an accurate volume of the
cells. An edge detection technique is used to accurately resolve the boundary between the cell line and the suspension
medium. The measurement of the polystyrene bead diameter and volume has been demonstrated the validity of our
proposed method. The measured phase profile can be easily converted into thickness profile. The measured polystyrene
bead volume and the simulated result are about 14.74 μm3 and 14.14 μm3, respectively. The experimental results of our proposed method agree well with the simulated results within less than 4 %. We have also measured the volume
variation of a single RBC on a millisecond time scale. Its mean volume is 54.02 μm3 and its standard deviation is 0.52
μm3. With the proposed system, the shape and volume changes of RBC induced by the increased intracellular Ca2+ are measured after adding ionophore A23187. A discocyte RBC is deformed to a spherocyte due to the increased intracellular Ca2+ in RBC. The volume of the spherocyte is 47.88 μm3 and its standard deviation is 0.19 μm3. We have demonstrated that the volume measurement technique is easy, accurate, and robust method with high volume sensitivity (<0.0000452 μm3) and this provides the ability to study a biological phenomenon in Hematology.
Paper Details
Date Published: 12 February 2009
PDF: 8 pages
Proc. SPIE 7182, Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues VII, 71821P (12 February 2009); doi: 10.1117/12.809157
Published in SPIE Proceedings Vol. 7182:
Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues VII
Daniel L. Farkas; Dan V. Nicolau; Robert C. Leif, Editor(s)
PDF: 8 pages
Proc. SPIE 7182, Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues VII, 71821P (12 February 2009); doi: 10.1117/12.809157
Show Author Affiliations
Seungrag Lee, Gwangju Institute of Science and Technology (Korea, Republic of)
Ji Yong Lee, Gwangju Institute of Science and Technology (Korea, Republic of)
Ji Yong Lee, Gwangju Institute of Science and Technology (Korea, Republic of)
Wenzhong Yang, Gwangju Institute of Science and Technology (Korea, Republic of)
Dug Young Kim, Gwangju Institute of Science and Technology (Korea, Republic of)
Dug Young Kim, Gwangju Institute of Science and Technology (Korea, Republic of)
Published in SPIE Proceedings Vol. 7182:
Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues VII
Daniel L. Farkas; Dan V. Nicolau; Robert C. Leif, Editor(s)
© SPIE. Terms of Use
