Share Email Print

Proceedings Paper

Source stabilization for high quality time-domain diffuse optical tomography
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

We report a new close-loop feedback control method to keep a Mach-Zehnder electro-optic modulator (MZ-EOM) biased at the quadrature point and simultaneously correct the bias drift caused by the temperature changes as well as the inherent photorefractive effect. The modulator is a key part of our high speed time-domain diffuse optical tomography system. It modulates the dual-wavelength near-infrared light with the high speed pseudorandom bit sequence (PRBS) signal for the temporal point spread function (TPSF) measurements. Our method applies a periodical low frequency square wave with 50% duty cycle as the pilot tone upon the MZ-EOM together with the PRBS and sweep the bias voltage of the MZ-EOM in a self-adaptive step. A constant fraction of the modulated output power is measured by a photodiode via a tap coupler. After demodulation, the modulation depth versus the bias voltage can be measured from which the peak value corresponding to the quadrature point can be located quickly by curve fitting. Our stabilization technique is simple, fast and cost effective and is effective to correct the bias drift caused by the photorefractive and the change of ambient conditions. The experiment results show the TPSFs measurements can be stabilized to within ±2% in an hour duration, which helps improved the image quality.

Paper Details

Date Published: 23 February 2009
PDF: 9 pages
Proc. SPIE 7170, Design and Quality for Biomedical Technologies II, 71700N (23 February 2009); doi: 10.1117/12.808188
Show Author Affiliations
Weirong Mo, National Univ. of Singapore (Singapore)
Nanguang Chen, National Univ. of Singapore (Singapore)

Published in SPIE Proceedings Vol. 7170:
Design and Quality for Biomedical Technologies II
Ramesh Raghavachari; Rongguang Liang, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?