Share Email Print

Proceedings Paper

Measurements and analysis in imaging for biomedical applications
Author(s): Timothy L. Hoeller
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

A Total Quality Management (TQM) approach can be used to analyze data from biomedical optical and imaging platforms of tissues. A shift from individuals to teams, partnerships, and total participation are necessary from health care groups for improved prognostics using measurement analysis. Proprietary measurement analysis software is available for calibrated, pixel-to-pixel measurements of angles and distances in digital images. Feature size, count, and color are determinable on an absolute and comparative basis. Although changes in images of histomics are based on complex and numerous factors, the variation of changes in imaging analysis to correlations of time, extent, and progression of illness can be derived. Statistical methods are preferred. Applications of the proprietary measurement software are available for any imaging platform. Quantification of results provides improved categorization of illness towards better health. As health care practitioners try to use quantified measurement data for patient diagnosis, the techniques reported can be used to track and isolate causes better. Comparisons, norms, and trends are available from processing of measurement data which is obtained easily and quickly from Scientific Software and methods. Example results for the class actions of Preventative and Corrective Care in Ophthalmology and Dermatology, respectively, are provided. Improved and quantified diagnosis can lead to better health and lower costs associated with health care. Systems support improvements towards Lean and Six Sigma affecting all branches of biology and medicine. As an example for use of statistics, the major types of variation involving a study of Bone Mineral Density (BMD) are examined. Typically, special causes in medicine relate to illness and activities; whereas, common causes are known to be associated with gender, race, size, and genetic make-up. Such a strategy of Continuous Process Improvement (CPI) involves comparison of patient results to baseline data using F-statistics. Self-parings over time are also useful. Special and common causes are identified apart from aging in applying the statistical methods. In the future, implementation of imaging measurement methods by research staff, doctors, and concerned patient partners result in improved health diagnosis, reporting, and cause determination. The long-term prospects for quantified measurements are better quality in imaging analysis with applications of higher utility for heath care providers.

Paper Details

Date Published: 23 February 2009
PDF: 16 pages
Proc. SPIE 7182, Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues VII, 71821K (23 February 2009); doi: 10.1117/12.808051
Show Author Affiliations
Timothy L. Hoeller, DQR Testing Services (United States)

Published in SPIE Proceedings Vol. 7182:
Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues VII
Daniel L. Farkas; Dan V. Nicolau; Robert C. Leif, Editor(s)

© SPIE. Terms of Use
Back to Top