Share Email Print

Proceedings Paper

Quantum dot bioconjugates: uptake into cells and induction of changes in normal cellular transport
Author(s): Tore-Geir Iversen; Nadine Frerker; Kirsten Sandvig
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Can quantum dots (QDs) act as relevant intracellular probes to investigate routing of ligands in live cells? To answer this question we studied intracellular trafficking of QDs that were coupled to the plant toxin ricin, Shiga toxin or the ligand transferrin (Tf) by confocal fluorescence microscopy in three different cell lines. The Tf:QDs were internalized but instead of being recycled they accumulated within endosomes in all cell lines. However, for the HEp-2 and SW480 cells a higher fraction colocalized with a lysosomal marker as compared with HeLa cells. The Shiga:QD bioconjugate was internalized slowly and with poor efficiency in the HEp-2 and SW480 cells as compared with HeLa cells, and was not routed to the Golgi apparatus in any of the cell lines. The internalized ricin:QD bioconjugates localized to the same endosomes as ricin itself, but could in contrast to ricin not be visualized in the Golgi apparatus. Importantly, we find that the endosomal accumulation of either ricin:QDs or transferrin:QDs affects endosome-to-Golgi transport of both ricin and Shiga toxin: Transport of ricin was reduced whereas transport of Shiga toxin was increased. In conclusion, the data from different cells reveal that in general these ligand-coupled QD nanoparticles are arrested within endosomes, and somehow perturb the normal endosomal sorting in cells.

Paper Details

Date Published: 3 March 2009
PDF: 9 pages
Proc. SPIE 7189, Colloidal Quantum Dots for Biomedical Applications IV, 71890T (3 March 2009); doi: 10.1117/12.807086
Show Author Affiliations
Tore-Geir Iversen, Norwegian Radium Hospital, Univ. of Oslo (Norway)
Nadine Frerker, Norwegian Radium Hospital, Univ. of Oslo (Norway)
Kirsten Sandvig, Norwegian Radium Hospital, Univ. of Oslo (Norway)

Published in SPIE Proceedings Vol. 7189:
Colloidal Quantum Dots for Biomedical Applications IV
Marek Osinski; Thomas M. Jovin M.D.; Kenji Yamamoto M.D., Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?