Share Email Print

Proceedings Paper

Band gap of nanometer thick Si/SiO2 quantum wells: theory versus experiment
Author(s): D. J. Lockwood
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

In opto-electronics and photonics, the severe disadvantage of an indirect band gap has limited the application of elemental silicon. Amongst a number of diverse approaches to engineering efficient light emission in silicon nanostructures, one system that has received considerable attention has been Si/SiO2 quantum wells. Engineering such structures has not been easy, because to observe the desired quantum confinement effects, the quantum well thickness has to be less than 5 nm. Nevertheless, such nanometer thick structures have now been produced by a variety of techniques. The SiO2 layers are amorphous, but the silicon layers can range from amorphous through nanocrystalline to single-crystal form. The fundamental band gap of the quantum wells has been measured primarily by optical techniques and strong confinement effects have been observed. A number of theories based primarily on ab initio approaches have been developed to explain these results with varying degrees of success. In this review, a detailed comparison is made between theoretical and experimental determinations of the band gap in Si/SiO2 quantum wells.

Paper Details

Date Published: 12 August 2008
PDF: 10 pages
Proc. SPIE 7099, Photonics North 2008, 70991F (12 August 2008); doi: 10.1117/12.804577
Show Author Affiliations
D. J. Lockwood, National Research Council Canada (Canada)

Published in SPIE Proceedings Vol. 7099:
Photonics North 2008
Réal Vallée; Michel Piché; Peter Mascher; Pavel Cheben; Daniel Côté; Sophie LaRochelle; Henry P. Schriemer; Jacques Albert; Tsuneyuki Ozaki, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?