Share Email Print
cover

Proceedings Paper

TIR-based photothermal/photoacoustic deflection
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

We report on a new experimental technique for monitoring laser-induced shock waves and thermal waves above the sample surface called total internal reflection based photothermal or photoacoustic deflection (TIR based PTD/PAD deflection). It is based on the changes in transmissivity of a prism which is operated near the condition of total internal reflection for a HeNe laser beam propagating parallel to the sample surface at a small distance. The HeNe laser beam is probing photoacoustic or photothermal waves originating from a sample surface due to interaction with a pulsed Nd:YAG laser beam. The method is compared with standard online detection techniques like scatter probe monitoring and plasma detection, and found to be a very sensitive and practical tool. It also showed its suitability for selectively monitoring several surfaces (e. g. front and rear surface) of optical components, and attributing the damage starting point. Therefore, the method might be used for monitoring of surface damage on laser crystals or valuable components. Keywords: photothermal deflection, photoacoustic deflection, laser damage, total internal reflection.

Paper Details

Date Published: 30 December 2008
PDF: 8 pages
Proc. SPIE 7132, Laser-Induced Damage in Optical Materials: 2008, 71320S (30 December 2008); doi: 10.1117/12.804092
Show Author Affiliations
Wolfgang Riede, German Aerospace Ctr. (Germany)
Paul Allenspacher, German Aerospace Ctr. (Germany)
J. Franck, Night Vision & Electronic Sensors Directorate (United States)


Published in SPIE Proceedings Vol. 7132:
Laser-Induced Damage in Optical Materials: 2008
Gregory J. Exarhos; Detlev Ristau; M. J. Soileau; Christopher J. Stolz, Editor(s)

© SPIE. Terms of Use
Back to Top
PREMIUM CONTENT
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?
close_icon_gray