Share Email Print

Proceedings Paper

Light-induced growth of monodisperse silver nanoparticles with tunable SPR properties and wavelength self-limiting effect
Author(s): Xianliang Zheng; John R. Lombardi
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

We present a technique for the tunable synthesis of a variety of monodisperse silver nanoparticles. Utilizing different optical wavelengths to irradiate initially grown seed crystals, the size and shape of the products can be controlled. Monitoring the absorption spectrum during growth, we observe that initially the absorption maximum shifts to longer wavelengths and broadens, indicating increasing particle size and dispersion. Remarkably, this effect gradually comes to a halt and reverses, displaying a shift to shorter wavelengths and simultaneously narrower bandwidths, until on completion, a final size and relatively narrow distribution is reached. The final morphology is found to depend on control of the laser wavelength and power. Discs, triangular prisms as well as pyramidal and pentagonal prisms may be produced. A process based on a wavelength dependent self-limiting mechanism governed by the surface plasmon resonance controlling the photochemical reduction of particles is suggested. By a similar mechanism, we show that by using a sodium lamp instead of a laser as an excitation source, a monodisperse sample of nanotetrahedra can be produced.

Paper Details

Date Published: 26 August 2008
PDF: 9 pages
Proc. SPIE 7032, Plasmonics: Metallic Nanostructures and Their Optical Properties VI, 70321X (26 August 2008); doi: 10.1117/12.798134
Show Author Affiliations
Xianliang Zheng, Jilin Univ. (China)
The City College of New York (United States)
John R. Lombardi, The City College of New York (United States)

Published in SPIE Proceedings Vol. 7032:
Plasmonics: Metallic Nanostructures and Their Optical Properties VI
Mark I. Stockman, Editor(s)

© SPIE. Terms of Use
Back to Top