Share Email Print

Proceedings Paper

Solid micro horn array (SMIHA) for acoustic matching
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Transduction of electrical signals to mechanical signals and vice-versa in piezoelectric materials is controlled by the material coupling coefficient. In general in a loss-less material the ratio of energy conversion per cycle is proportional to the square of the coupling coefficient. In practical transduction however the impedance mismatch between the piezoelectric material and the electrical drive circuitry or the mechanical structure can have a significant impact on the power transfer. In this paper a novel method of matching the acoustic impedance of structures to the piezoelectric material are described and discussed in relation to the objective of increasing power transmission and efficiency. In typical methods the density and acoustic velocity of the matching layer is adjusted to give "ideal" matching between the transducer and the load. The approach discussed in this paper utilizes solid micro horn arrays in the matching layer which channel the stress and increase the strain in the layer. This approach is found to have potential applications in energy harvesting, medical ultrasound and in liquid and gas coupled transducers.

Paper Details

Date Published: 8 April 2008
PDF: 9 pages
Proc. SPIE 6932, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2008, 69322X (8 April 2008); doi: 10.1117/12.776384
Show Author Affiliations
S. Sherrit, Jet Propulsion Lab. (United States)
X. Bao, Jet Propulsion Lab. (United States)
Y. Bar-Cohen, Jet Propulsion Lab. (United States)

Published in SPIE Proceedings Vol. 6932:
Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2008
Masayoshi Tomizuka, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?