
Proceedings Paper
Semi-active control of floor isolation system using MR-damperFormat | Member Price | Non-Member Price |
---|---|---|
$17.00 | $21.00 |
Paper Abstract
This paper presents the performance evaluation of a semi-active controlled floor isolation system for earthquake
reduction. The floor isolation system consists of a rolling pendulum system and a semi-active controlled MR damper.
The modified Bouc-Wen model is used to represent the behavior of the MR damper. A serious of performance test of the
MR damper is made and been used for system identification. Two contrasting control methods including LQR with
continuous-optimal control and Fuzzy Logic control are experimentally investigated as potential algorithms and
comparisons are made from the results. Unlike the clipped-optimal control, LQR with continuous-optimal control can
output the continuous command voltage to control the MR damper, and get smoother control effect. A three-story steel
structure with the floor isolation system on the 2nd floor is tested on the shake table. Scaled historical near- and far-field
seismic records are employed to examine controller performance with respect to frequency content and PGA level.
Experimental results show that both control algorithms can suppress the acceleration of the isolated floor during small
and large PGA levels, and alleviate both displacement and acceleration simultaneously in larger, near-field events. Both
control algorithms are adaptive and robust to various intensity of excitation. This investigation demonstrates the
feasibility and capabilities of a smart semi-active controlled floor-isolation system.
Paper Details
Date Published: 8 April 2008
PDF: 11 pages
Proc. SPIE 6932, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2008, 69320U (8 April 2008); doi: 10.1117/12.776095
Published in SPIE Proceedings Vol. 6932:
Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2008
Masayoshi Tomizuka, Editor(s)
PDF: 11 pages
Proc. SPIE 6932, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2008, 69320U (8 April 2008); doi: 10.1117/12.776095
Show Author Affiliations
Pei-Yang Lin, National Ctr. for Research on Earthquake Engineering (Taiwan)
Chin-Hsiung Loh, National Taiwan Univ. (Taiwan)
Published in SPIE Proceedings Vol. 6932:
Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2008
Masayoshi Tomizuka, Editor(s)
© SPIE. Terms of Use
