Share Email Print

Proceedings Paper

Bistable mechanisms for morphing rotors
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

In this paper we explore the use of bistable mechanisms for rotor morphing, specifically, blade tip twist. The optimal blade twist distributions for hover and high-speed forward flight are very different, and the ability of the rotor to change effective twist is expected to be advantageous. Bistable or "snap-through" mechanisms have multiple stable equilibrium states and are a novel way to achieve large actuation output stroke at relatively modest effort for gross rotor morphing applications. This is because in addition to the large actuation stroke associated with the snap-through (relative to conventional actuator/ amplification systems) coming at relatively low actuation effort, no locking is required in either equilibrium state (since they are both stable). In this work, the performance of a bistable twisting device is evaluated under an aerodynamic lift load. The device is analyzed using finite element analysis to predict the device's load carrying capability and bistable behavior.

Paper Details

Date Published: 18 April 2008
PDF: 12 pages
Proc. SPIE 6928, Active and Passive Smart Structures and Integrated Systems 2008, 692829 (18 April 2008); doi: 10.1117/12.775748
Show Author Affiliations
Terrence Johnson, Pennsylvania State Univ. (United States)
Farhan Gandhi, Pennsylvania State Univ. (United States)
Mary Frecker, Pennsylvania State Univ. (United States)

Published in SPIE Proceedings Vol. 6928:
Active and Passive Smart Structures and Integrated Systems 2008
Mehdi Ahmadian, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?