
Proceedings Paper
Numerical and experimental study of a three-axis optical tactile sensing systemFormat | Member Price | Non-Member Price |
---|---|---|
$17.00 | $21.00 |
Paper Abstract
In this study, we investigated a promising method for measuring three-axis force based on an optical tactile sensing
system. Such system consists of a waveguide, an array of tactile cell, a light source and an image sensor (a CCD
camera). When the tactile cells are subjected to external forces, the condition for total internal reflection of the attached
waveguide is spoiled. The original symmetrical planar waveguide then changes to an asymmetrical one, leading to light
leakage in the transverse direction, which is used as the sensing mechanism for the applied forces. A numerical study
involving three-dimensional finite element analysis was carried out to study the deformation of tactile cells due to
contact forces. A linear relationship between the applied three-axis force and the spot sizes of the image of the leaked
light was obtained and validated by experiments.
Paper Details
Date Published: 8 April 2008
PDF: 12 pages
Proc. SPIE 6932, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2008, 69321B (8 April 2008); doi: 10.1117/12.775391
Published in SPIE Proceedings Vol. 6932:
Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2008
Masayoshi Tomizuka, Editor(s)
PDF: 12 pages
Proc. SPIE 6932, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2008, 69321B (8 April 2008); doi: 10.1117/12.775391
Show Author Affiliations
Published in SPIE Proceedings Vol. 6932:
Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2008
Masayoshi Tomizuka, Editor(s)
© SPIE. Terms of Use
