Share Email Print

Proceedings Paper

LMI-based H2/H∞ terminal proximity guidance algorithm for autonomous rendezvous and docking
Author(s): Weiyue Chen; Wuxing Jing
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

In the terminal proximity stage of autonomous rendezvous and docking, H2 and H and guidance algorithms are adopted to overcome the influence on relative guidance accuracy of the following terms, the uncertainty of the system model, the noise of the relative information measurements and thrust misalignment. First of all, a widely used glide slope scheme is introduced to plan the ideal terminal proximity trajectory. Using this assumption the ideal relative position and velocity can be determined beforehand. And then, the tracking error equations for V-bar approach are derived. So the guidance problem is transformed to synthesize a controller to eliminate the tracking error to zero. Modern control methods are applied to design the H2 / H controller. The LMI (linear matrix inequalities) technology is adopted here to get the final solution for controllers. Simulation based on the solution obtained though MATLABRLMI toolbox is performed on a scenario of the rendezvous and docking final proximity stage. The simulation results verify the validity and superiority of the H design method for the terminal proximity of autonomous rendezvous and docking.

Paper Details

Date Published: 10 November 2007
PDF: 7 pages
Proc. SPIE 6795, Second International Conference on Space Information Technology, 679556 (10 November 2007);
Show Author Affiliations
Weiyue Chen, Harbin Institute of Technology (China)
Wuxing Jing, Harbin Institute of Technology (China)

Published in SPIE Proceedings Vol. 6795:
Second International Conference on Space Information Technology
Cheng Wang; Shan Zhong; Jiaolong Wei, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?