Share Email Print

Proceedings Paper

Piezoelectric polymeric thin films tuned by carbon nanotube fillers
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Piezoelectric materials have received considerable attention from the smart structure community because of their potential use as sensors, actuators and power harvesters. In particular, polyvinylidene fluoride (PVDF) has been proposed in recent years as an enabling material for a variety of sensing and energy harvesting applications. In this study, carbon nanotubes (CNT) are included within a PVDF matrix to enhance the properties of PVDF. The CNT-PVDF composite is fabricated by solvent evaporation and melt pressing. The inclusion of CNT allows the dielectric properties of the PVDF material to be adjusted such that lower poling voltages can be used to induce a permanent piezoelectric effect in the composite. To compare the piezoelectric characteristics of the CNT-PVDF composite proposed, scanning electron microscope (SEM) images were analyzed and ferroelectric experiments were conducted. Finally, the aforementioned composites were mounted upon the surface of a cantilevered beam to compare the voltage generation of the CNT-PVDF composite against homogeneous PVDF thin films.

Paper Details

Date Published: 8 April 2008
PDF: 10 pages
Proc. SPIE 6932, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2008, 693232 (8 April 2008); doi: 10.1117/12.774256
Show Author Affiliations
Junhee Kim, Univ. of Michigan (United States)
Kenneth J. Loh, Univ. of Michigan (United States)
Jerome P. Lynch, Univ. of Michigan (United States)

Published in SPIE Proceedings Vol. 6932:
Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2008
Masayoshi Tomizuka, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?