Share Email Print

Proceedings Paper

Beamformer enhancement by post-processing for improved spatial resolution and signal-to-noise ratio
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Various methods are used in ultrasound beamforming to increase signal-to-noise ratio (SNR) and improve spatial resolution. SNR is typically improved by exploiting coherence in the RF channel data, for example summing channel data after applying focal delays in the delay-and-sum (DAS) beamformer, and summing channel data after applying a per-channel matched filter for the spatial matched filter beamformer[1]. Inverse filter methods are capable of improving spatial resolution at the cost of SNR [2],[3], or can trade resolution for SNR using a regularization parameter, but in general are very computationally intensive due to the large RF data sets used. We propose a post-processing method operating on post-summed but pre-envelope detected beamformed image data that can improve the pixel SNR and spatial resolution of any beamformer with low computational cost. This is achieved by forming a new pixel for each point in the image as a linear combination of the surrounding beamformed pixels. The weights for each pixel are calculated in advance using a quadratically constrained least squares method to reduce PSF energy outside the mainlobe and noise energy. Simulations indicate that this method can increase cystic contrast by up to 20dB without any cost in SNR, and can increase pixel SNR can by up 16dB without affecting contrast. Alternatively, simultaneous gains in contrast and SNR can be achieved. Experimental results show smaller performance improvements yet validate the feasibility of this technique.

Paper Details

Date Published: 10 March 2008
PDF: 12 pages
Proc. SPIE 6920, Medical Imaging 2008: Ultrasonic Imaging and Signal Processing, 692002 (10 March 2008); doi: 10.1117/12.772942
Show Author Affiliations
Kevin Owen, Univ. of Virginia (United States)
Drake A. Guenther, Univ. of Virginia (United States)
William F. Walker, Univ. of Virginia (United States)

Published in SPIE Proceedings Vol. 6920:
Medical Imaging 2008: Ultrasonic Imaging and Signal Processing
Stephen A. McAleavey; Jan D'hooge, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?