Share Email Print

Proceedings Paper

PET/CT detectability and classification of simulated pulmonary lesions using an SUV correction scheme
Author(s): Andrew N. Morrow; Kenneth L. Matthews II; Steven Bujenovic M.D.
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Positron emission tomography (PET) and computed tomography (CT) together are a powerful diagnostic tool, but imperfect image quality allows false positive and false negative diagnoses to be made by any observer despite experience and training. This work investigates PET acquisition mode, reconstruction method and a standard uptake value (SUV) correction scheme on the classification of lesions as benign or malignant in PET/CT images, in an anthropomorphic phantom. The scheme accounts for partial volume effect (PVE) and PET resolution. The observer draws a region of interest (ROI) around the lesion using the CT dataset. A simulated homogenous PET lesion of the same shape as the drawn ROI is blurred with the point spread function (PSF) of the PET scanner to estimate the PVE, providing a scaling factor to produce a corrected SUV. Computer simulations showed that the accuracy of the corrected PET values depends on variations in the CT-drawn boundary and the position of the lesion with respect to the PET image matrix, especially for smaller lesions. Correction accuracy was affected slightly by mismatch of the simulation PSF and the actual scanner PSF. The receiver operating characteristic (ROC) study resulted in several observations. Using observer drawn ROIs, scaled tumor-background ratios (TBRs) more accurately represented actual TBRs than unscaled TBRs. For the PET images, 3D OSEM outperformed 2D OSEM, 3D OSEM outperformed 3D FBP, and 2D OSEM outperformed 2D FBP. The correction scheme significantly increased sensitivity and slightly increased accuracy for all acquisition and reconstruction modes at the cost of a small decrease in specificity.

Paper Details

Date Published: 6 March 2008
PDF: 11 pages
Proc. SPIE 6917, Medical Imaging 2008: Image Perception, Observer Performance, and Technology Assessment, 691707 (6 March 2008); doi: 10.1117/12.772364
Show Author Affiliations
Andrew N. Morrow, Louisiana State Univ. (United States)
Kenneth L. Matthews II, Louisiana State Univ. (United States)
Steven Bujenovic M.D., Our Lady of the Lake Regional Medical Ctr. (United States)

Published in SPIE Proceedings Vol. 6917:
Medical Imaging 2008: Image Perception, Observer Performance, and Technology Assessment
Berkman Sahiner; David J. Manning, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?