Share Email Print

Proceedings Paper

Photostimulation of sensory neurons of the rat vagus nerve
Author(s): Albert Y. Rhee; Gong Li; Jonathon Wells; Joseph P. Y. Kao
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

We studied the effect of infrared (IR) stimulation on rat sensory neurons. Primary sensory neurons were prepared by enzymatic dissociation of the inferior (or "nodose") ganglia from the vagus nerves of rats. The 1.85-μm output of a diode laser, delivered through a 200-μm silica fiber, was used for photostimulation. Nodose neurons express the vanilloid receptor, TRPV1, which is a non-selective cation channel that opens in response to significant temperature jumps above 37 C. Opening TRPV1 channels allows entry of cations, including calcium (Ca2+), into the cell to cause membrane depolarization. Therefore, to monitor TRPV1 activation consequent to photostimulation, we used fura-2, a fluorescent Ca2+ indicator, to monitor the rise in intracellular Ca2+ concentration ([Ca2+]i). Brief trains of 2-msec IR pulses activated TRPV1 rapidly and reversibly, as evidenced by transient rises in [Ca2+]i (referred to as Ca2+ transients). Consistent with the Ca2+ transients arising from influx of Ca2+, identical photostimulation failed to evoke Ca2+ responses in the absence of extracellular Ca2+. Furthermore, the photo-induced Ca2+ signals were abolished by capsazepine, a specific blocker of TRPV1, indicating that the responses were indeed mediated by TRPV1. We discuss the feasibility of using focal IR stimulation to probe neuronal circuit properties in intact neural tissue, and compare IR stimulation with another photostimulation technique-focal photolytic release of "caged" molecules.

Paper Details

Date Published: 11 March 2008
PDF: 5 pages
Proc. SPIE 6854, Optical Interactions with Tissue and Cells XIX, 68540E (11 March 2008); doi: 10.1117/12.772037
Show Author Affiliations
Albert Y. Rhee, Univ. of Maryland Biotechnology Institute (United States)
Univ. of Maryland, Baltimore (United States)
Gong Li, Univ. of Maryland (United States)
Univ. of Maryland School of Dentistry (United States)
Jonathon Wells, Aculight Corp. (United States)
Joseph P. Y. Kao, Univ. of Maryland Biotechnology Institute (United States)
Univ. of Maryland, Baltimore (United States)
Univ. of Maryland School of Medicine (United States)

Published in SPIE Proceedings Vol. 6854:
Optical Interactions with Tissue and Cells XIX
Steven L. Jacques; William P. Roach; Robert J. Thomas, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?