Share Email Print

Proceedings Paper

Clinical breast imaging using sound-speed reconstructions of ultrasound tomography data
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

To improve clinical breast imaging, a new ultrasound tomography imaging device (CURE) has been built at the Karmanos Cancer Institute. The ring array of the CURE device records ultrasound transmitted and reflected ultrasound signals simultaneously. We develop a bent-ray tomography algorithm for reconstructing the sound-speed distribution of the breast using time-of-flights of transmitted signals. We study the capability of the algorithm using a breast phantom dataset and over 190 patients' data. Examples are presented to demonstrate the sound-speed reconstructions for different breast types from fatty to dense on the BI-RADS categories 1-4. Our reconstructions show that the mean sound-speed value increases from fatty to dense breasts: 1440.8 m/ s (fatty), 1451.9 m/ s (scattered), 1473.2 m/ s(heterogeneous), and 1505.25 m/ s (dense). This is an important clinical implication of our reconstruction. The mean sound speed can be used for breast density analysis. In addition, the sound-speed reconstruction, in combination with attenuation and reflectivity images, has the potential to improve breast-cancer diagnostic imaging. The breast is not compressed and does not move during the ultrasound scan using the CURE device, stacking 2D slices of ultrasound sound-speed tomography images forms a 3D volumetric view of the whole breast. The 3D image can also be projected into a 2-D "ultrasound mammogram" to visually mimic X-ray mammogram without breast compression and ionizing radiation.

Paper Details

Date Published: 10 March 2008
PDF: 9 pages
Proc. SPIE 6920, Medical Imaging 2008: Ultrasonic Imaging and Signal Processing, 692009 (10 March 2008); doi: 10.1117/12.771436
Show Author Affiliations
Cuiping Li, Karmanos Cancer Institute (United States)
Neb Duric, Karmanos Cancer Institute (United States)
Lianjie Huang, Los Alamos National Lab. (United States)

Published in SPIE Proceedings Vol. 6920:
Medical Imaging 2008: Ultrasonic Imaging and Signal Processing
Stephen A. McAleavey; Jan D'hooge, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?